Cuprizone-induced demyelination and demyelination-associated inflammation result in different proton magnetic resonance metabolite spectra
نویسندگان
چکیده
Conventional MRI is frequently used during the diagnosis of multiple sclerosis but provides only little additional pathological information. Proton MRS ((1) H-MRS), however, provides biochemical information on the lesion pathology by visualization of a spectrum of metabolites. In this study we aimed to better understand the changes in metabolite concentrations following demyelination of the white matter. Therefore, we used the cuprizone model, a well-established mouse model to mimic type III human multiple sclerosis demyelinating lesions. First, we identified CX3 CL1/CX3 CR1 signaling as a major regulator of microglial activity in the cuprizone mouse model. Compared with control groups (heterozygous CX3 CR1(+/-) C57BL/6 mice and wild type CX3 CR1(+/+) C57BL/6 mice), microgliosis, astrogliosis, oligodendrocyte cell death and demyelination were shown to be highly reduced or absent in CX3 CR1(-/-) C57BL/6 mice. Second, we show that (1) H-MRS metabolite spectra are different when comparing cuprizone-treated CX3 CR1(-/-) mice showing mild demyelination with cuprizone-treated CX3 CR1(+/+) mice showing severe demyelination and demyelination-associated inflammation. Following cuprizone treatment, CX3 CR1(+/+) mice show a decrease in the Glu, tCho and tNAA concentrations as well as an increased Tau concentration. In contrast, following cuprizone treatment CX3 CR1(-/-) mice only showed a decrease in tCho and tNAA concentrations. Therefore, (1) H-MRS might possibly allow us to discriminate demyelination from demyelination-associated inflammation via changes in Tau and Glu concentration. In addition, the observed decrease in tCho concentration in cuprizone-induced demyelinating lesions should be further explored as a possible diagnostic tool for the early identification of human MS type III lesions.
منابع مشابه
Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy
Non-invasive measures of well-known pathological hallmarks of multiple sclerosis (MS) such as demyelination, inflammation and axonal injury would serve as useful markers to monitor disease progression and evaluate potential therapies. To this end, in vivo localized proton magnetic resonance spectroscopy ((1)H-MRS) provides a powerful means to monitor metabolic changes in the brain and may be se...
متن کاملAssessment of lesion pathology in a new animal model of MS by multiparametric MRI and DTI
Magnetic resonance imaging (MRI) is the gold standard for the detection of multiple sclerosis (MS) lesions. However, current MRI techniques provide little information about the structural features of a brain lesion with inflammatory cell infiltration, demyelination, gliosis, acute axonal damage and axonal loss. To identify methods for a differentiation of demyelination, inflammation, and axonal...
متن کاملMicroglial Hv1 proton channel promotes cuprizone-induced demyelination through oxidative damage.
NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in inflammatory cells including microglia plays an important role in demyelination and free radical-mediated tissue injury in multiple sclerosis (MS). However, the mechanism underlying microglial ROS production and demyelination remains largely unknown. The voltage-gated proton channel, Hv1, is selectively expressed in micro...
متن کاملErythropoietin attenuates neurological and histological consequences of toxic demyelination in mice.
Erythropoietin (EPO) reduces symptoms of experimental autoimmune encephalomyelitis in rodents and shows neuroregenerative effects in chronic progressive multiple sclerosis. The mechanisms of action of EPO in these conditions with shared immunological etiology are still unclear. Therefore, we used a model of toxic demyelination allowing exclusion of T cell-mediated inflammation. In a double-blin...
متن کاملP 45: De- and Remyelination Affect Cognitive and Locomotor Abilities in Mice
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammatory and neurodegenerative processes. One of its pathophysiological hallmarks is demyelination, a consequence of oligodendroglial cell death leading supply shortfall and missing electrical insulation to axons. Demyelination induced consequences on neuronal network activity and subsequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2015